

### CONNECTIVE TISSUE AND THE ATTACHMENT OF PIN BONE IN SALMON AND COD

#### Why are the pin bones so firmly attached?

#### Mona E. Pedersen



### What is the problem?

- The pin bones are difficult to remove early *post-mortem* from the filet
- When removed either the filet is damaged, or the pin bones break inside the muscle
- The pulling force of pin bones decreases *post mortem*, differ between anterior and posterior position in the fish, and is higher in cod compared to salmon (Leif Akse *et al*, Fiskeriforskning, Rapport 15/2002).
- Little is known about how pinbones are attached to the muscle



Connective tissue= a complex structural network

Extracellular matrix (proteoglycans, collagens and glycoproteins)

Adhesion proteins (syndecans, glypicans, integrins)

Cells (fibroblasts, fat cells, immune cells)

Enzymes (MMPs, serine proteases, aggrecanases, cathepsines etc.)



# Strong interaction of carbohydrates and proteins

Decorin





### Aim of the study

- Characterize the structure of the attachement
- Identify connective tissue components in the structure
- Study enzymes and the degradation prosess *post mortem*

### Sampling

- Salmon and cod
- 0h, 6h, 12h, 24h, 48h, 3 days and 5 days storage
- Dissected 6000 pinbones from anterior and posterior position in the filet
- Either fixed or frozen in liquid nitrogen before further analysis



#### Methods used in the study

- Microarray: Screening of components in the structure.
  What is expressed of connective tissue components, adhesion proteins, enzymes ?
- **Histology:** Study structure, localization of relevant proteins and degradation of the structure *post mortem*
- **Zymografi:** Identify enzymes and their activity *post mortem*
- **Proteomics:** Identify relevant proteins that are changed (Oh and 5d). Screening of proteins
- Western blotting: Verify changes of relevant single proteins during storage period









#### Interphase connective tissue -bone

Bone





#### Gene expression analysis



- Pooled samples of the two most anterior and posterior pin bones from four fish were selected for microarray gene expression analysis.
- Pooled samples of muscle from all four fish were used as reference in the analysis.
- Comparison of gene expression profile:
  - Pin bone vs. muscle
  - Anterior pin bone vs. posterior pin bone

#### Results – cod



Foto: © Frank Gregersen / Nofima

- > 2000 differentially expressed genes between pin bone and muscle
- Enrichment analysis of differentially expressed genes

|               | Skeletal muscle        | 176 |
|---------------|------------------------|-----|
|               | Immune                 | 94  |
|               | Metabolism-ribosome    | 50  |
|               | Met-mitochondria       | 44  |
|               | Differentiation        | 40  |
|               | Metabolisme-lipid      | 21  |
| $\rightarrow$ | Extracellular matrix   | 22  |
|               | Stress                 | 16  |
|               | Metabolisme-proteosome | 16  |
|               | Neural                 | 13  |
|               | Chromosome             | 13  |
|               | Metabolisme-protease   | 12  |
|               | Cytoskeleton           | 11  |
|               | Adhesion               | 8   |
|               | Matabolisme-sugar      | 7   |
|               | Metabolism-xenobiotic  | 6   |
|               | Smooth muscle          | 5   |
|               | Metabolisme-glycan     | 5   |
|               | RBC                    | 4   |
|               | Metabolisme-amino acid | 3   |
|               |                        |     |

Examples of genes:

- Extracellular matrix: collagen I, IV collagen V, collagen XI, collagen XII, decorin, laminin
- Lipid metabolism: fabp, lipase, acyl CoA synthetase, acyl CoA dehydrogenase
- Protease: MMP13, calpain, cathepsin F,catepsin H, serineprotease, elastase
- Adhesion: Integrins



#### Results – salmon



Foto: © Frank Gregersen / Nofima

- >193 differentially expressed genes in pin bone vs. muscle
- Examples of genes:
  - Extracellular matrix: collagen I, collagen III, collagen X, collagen XV, lumican, transgelin,
  - Proteases: collagenase, cathepsin K, MMP2, TIMP2, serine protease



#### Results – cod and salmon



- Generally higher gene expression levels in anterior vs posterior pin bones of both species
- Different extracellular matrix composition between the two species

# The connective tissue is rich of elastin, proteoglycans and collagens



Dark colour: Elastin Brown: Muscle



#### Dark colour: Proteoglycans Light blue: Muscle





Vofima

Tight connection between bone, connective tissue and muscle!!

#### But what happens during storage?





#### Salmon 5 days







#### Elastin fibres are broken



Cod 5 day.

#### Threadlike structures containing proteoglycans



#### Localization of collagen X and I in the splitting area



**D**Nofima

## The network of carbohydrate binding protein and collagen in the splitting area



















# Metalloproteases are active right after slaughter in salmon



# Metalloproteases activity is high during the storage period in cod



# Different types of degrading enzymes are active



#### Conclusions

- The connective tissue is important!
- Differences between muscle and pin bone area
- Differences between salmon and cod
- Differences in enzymatic profile between salmon and cod
- The connective tissue is broken during storage into threadlike structures
- It is the attachment between bone and connective tissue that is degraded *post mortem*

### Further work

- Histology of salmon and relevant candidate proteins identified by microarray analysis
- Study changes in proteins by proteomics during storage (0h and 5d)
- Study changes of relevant single proteins by western blotting during the storage period
- Identification of MMP types and localization



#### How can we use this information?

- When we know the pin bone biology we can:
  - Develop better methods for pin bone removal
  - Predict and examine which external factors that can be important
  - Optimize the pulling force

### Acknowledgments

matforskningsinstituttet



#### UNIVERSITETET I OSLO

Svein O. Kolset Tram T. Vuong

Sissel B. Rønning Kristin Hollung Tone-Kari Østbye Thomas Larsson Grethe Enersen Vibeke Høst Karen Sanden Karin Solgård

Nofima

#### This project is funded by FHF



FISKERI- OG HAVBRUKSNÆRINGENS FORSKNINGSFOND



